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Behavior of fractional diffusion at the origin
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The present work discusses the fractional diffusion equation based on the Riemann-Liouville fractional time
derivatives. It was shown that the normalization conservation constraint leads to the divergency of diffusive
agent concentration at the origin. This divergency implies an external source of the diffusive agerd.at
Thus, the Riemann-Liouville fractional time derivative implies a loss of diffusive agent mass, which is com-
pensated for by the source of this agent at the origin. In contrast, the absence of the normalization conservation
constraint does not lead to any divergences in the limit0 and at the same time provides the decay of
normalization.
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Today, anomalous diffusion transport is a widely ac- We will be concerned with equations
knowledged phenomendt—4]. It is detected by a variety of
experimental techniques in different physical systems. Ex- d ma
amples of this phenomenon are numerous. It occurs in amor- S f(r=Cq oD “[Af(r,1)] 1)
phous semiconductof$,6], polymers[7—9], composite het-
erogeneous filmgl0], porous medi@l1,12, and many other
systemg(for references see a recent revipdy). The distin-
guishing feature of anomalous transport is the power law @ _
time dependence for the mean square displaceneft oDLF(r,D]=CaAT(r.), @
~t% For O<a<1 this process is usually called “subdiffu-

sion” while for 1<« it is referred to as “superdiffusion.” To where f(r,t) denotes the unknown field of the diffusive

; : 1gent concentratiorC,, is the fractional diffusion constant
gﬁfgtri'cbj fg&irﬂgﬁgoé? ?P;:;Tiomn:%n?gtgg:i;?[golygihlez_ma“slvith dimension[ nf/s“], A Qenoteg the diﬁerent[al Lap!ace
Therefore these processes have also been named fractio@perator angDy" is the fractional Riemann-Liouville deriva-
diffusion processes after the meth[df_g,]_q_ In many works tive operator of order &€ a<1 and with the lower limitt
the authors replace the integer time derivative of the first=0,
order in the diffusion equation by a fractional one on a pure
mathematical or heuristic badi$3—17. However, there are _
works that prove the validitf/[ of thg fractional derivatives D0 ]= d—xali TH0 ], 3
method for the anomalous diffusion problem based on the
continuous time random walk approach and the fractionalyhere
Fokker-Planck equatiof#,20—23. Nevertheless, the variety
of existing mathematical definitions for fractional derivatives 1 [x
(see Ref[24] and references thergiteads to the possibility a'i[f(x)]:mf (x—y)* H(y)dy (4)
to discuss various types of fractional derivatives, depending é

on the physical situation. Sometimes this leads to many ol 4o piemann-Liouville fractional integral operator of order
ceptual difficulties in interpretation of the results. At the8 with a lower limita andT'(z) is the gamma function

same time the nonlocal form of a fractional time derivation Both Eq. (1) and Eq.(2) intend to describe anomalous

touches very basic ideas such as irreversibility, locality, an%iﬁusion transport. However, from a mathematical point of

invariance under the time translatiori®,25. Therefore, the view they are not equivalent. They may be regarded as two

v Tl S ifrent exampied] ofocin 3 ractosl et
Y through the Riemann-Liouville fractional integr@l). Obvi-

ISsue tod_ay. One pQSS|bIe_ way to clarify th!s problem is theously, the Riemann definitiof8), the “right-hand side” defi-
consecutive analysis of different ways to introduce a frac-

. : A : . S .~ ~nition, may be replaced by the “left-hand side” or Liouville
tional time derivative into a differential equation, investiga- = =, 1oy i
tion of the limiting cases, and comparison between themqelf[n't'on aDi[f(x)]=alx "[d/dxf(x)]. Upon applying
The purpose of this work is to discuss two different examplesoli * to Ed. (1) one sees that Eq1) can be represented in
of how to introduce a fractional time derivation into the dif- the form (D{[f(r,t)]=C,Af(r,t), which is similar to Eq.
fusion equation. (2).
Another important consideration is the initial condition.
Equation(1) requires an initial condition in the forrf(r,0)
*Also at Institute for Mechanics and Engineering of Kazan Sci-=g(r) or, in particular, for the Green function

entific Center of Russian Academy of Science, 420111 Kazan, Rus-
sia. Electronic address: Ryabov@vms.huiji.ac.il f(r,00="1y8(r), (5)
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where §(r) is the Dirac measure at the origin afglis the
strength of the initial pulse of concentration at the origin. In
contrast, Eq(2) requires the initial condition for the Green
function in the form[19,25

ol £ Lf(r,0)]=",8(r), (6)

wheref, , is once again a constant.

The exact solutions of both E¢l) with initial condition
(5) and Eq.(2) with initial condition (6) are known[19,26]
and represented through the Rdxfunctions[27] as

r? (L)
ace |z, 7

fo 20|
f(r,t)= (7T|’2)d/2H12

for Eq. (1) and

a—1

fout
f(r t) ( 2)d/2Hig

r? (a,) o
4Ct%((d/2,1),(1,1) ®

for Eq. (2). Hered is the Euclidean dimension of the spacet

where the diffusion occurs.
Upon introducingz=r?2/4C ,t* and using theH-function
definition[27] in the case of Eq(7) one obtains fod=1,

o i( z)( ['(1/2—K)
f(z,t)—m: ki \T(@A-a(1/2+k))
I(-1/2-k)z|
TTa—a(lrk))’ o
for d=2,
f , =
(1) 47C ¢

2¢(1+K) — ay(l—a(1+k))=In(2)
VA
KI’T'(1— a(1+Kk))

x> ;
k=0
(9b)
and ford=3,

o0 _ k _ o
o= fo ( z)( I'(—1/2—K)

(47Ct0¥2 &0 K | T(1— a(3/2+K))

I'(1/2—K) ) 90

i Fl—a(l+k)Vz/)'

wherey(x) is the logarithmic derivative of the gamma func-
tion. Solution(8) gives ford=1,

fout®2 1 2 (_z)k< '(1/2—k)
f(z,t)= NN 2 kI \T'(a(1/2—k))
T(—1/2-K)\z
T e
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FIG. 1. Schematic picture presentif@,t) vsr for the different
time moments. The upper row corresponds to Egs.The bottom
row corresponds to Eq$10). The solutions ford=1 are in the
left-hand panels, fod=2 in the middle, ford=3 on right-hand
side. Curves with label 1 are calculated fer0.01, with label 2 for
=0.1y/0.1, with label 3 fort=0.1, with label 4 fort=1/0.1, and
with label 5 fort=1. For numerical evaluationg=0.7, C,=1,
fo=1, andfy,=1 were used.

for d=2,
o 2¢(1+K) —ap(—ak)—=In(z)
(20=7rc1 2 KIZD(— ak) “
(10b)
and ford=3,
0al 2 J (=2 T(—1/2—k)
fzH)= (47C,)%?2 =0 k! I'(—a(1/2+k))
I'(1/2—K) ) 100
—_—=. C)
—ak)\z

Note that both Eq(7) and Eq.(8) imply axial symmetry of
f(r,t) for d=2 and spherical symmetry fat=3. The key
point is that only solution(7) has a probabilistic interpreta-
tion for f(r,t) since only for this equation normalization
holds constant while for Eq(8) normalization decays
[19,25 ast* 1.

Despite the fact that solution&) and (8) are already
known [19,26 it seems that representatioiid) and (10)

have not been derived before. Figure 1 presents some ex-

amples of Eqs(9) and Eqs.(10).

It was mentioned perviouslyl19] that the nonlocal form
of the initial condition(6) leads to the divergence &fr,t)
for t—0. Recent work$25,28,29 discuss this fact in rela-

tion to the fractional stationarity concept which establishes,
in addition to the conventional constants, a second class of

stationary states that obey power law time dependence.
Let us further discuss the behavior of the fractional diffu-

sion at the origirr — 0 for different dimensionsd. From Eqgs.

(9) for t>0 one immediately obtains in the casedf 1,
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fo
lim f(r,t)= ; 11
r—0 (r:t) 2I'(1— al2)\C t* (113
in the case ofi=2,
. ~ foln(4C,t%r?) 1
lim f(r,t)=lim ——  —~In| —|; (11b
r—0 r—o 47l (1—a)C,t* r
in the case ofi=3,
. . fo 1
lim f(r,t)=Ilim ~—, (110
0 r0 4T (1—a)Ct® T
while Egs.(10) for t>0 give in the case ofi=1,
lim f(r,t) fout (123
im f(r,t)y= —————;
r—0 2I'(al2)C t*
in the case ofl=2,
fim £(r.t)— 210 . 12b
rm (r,t)= anC i (12b)
in the case ofi=3
. anta_l
lim f(r,t)=— ' (120

47T (— al2)(C %)%

r—0

Thus, the solution of Eq.1) with initial condition (5) for

any t>0 is finite ford=1, exhibits logarithmic divergence

for d=2, and diverges asrifor d=3, while the solution of
Eq. (2) with initial condition (6) is always finite at the origin
r—0 [see Eqgs(11), Egs.(12), and Fig. 1.
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dence between the fractional diffusion and conventional dif-
fusion. However, solutior{7) exhibits divergency of (r,t)

at the origin ford=2 andd= 3, while the conventional dif-
fusion equation does not lead to any divergencies for the
Green functio{30] at the limitr—0 andt>0. In the case

of the classical diffusion equation such divergences imply
constant sources of the diffusive agent at the origin. Thus,
one could conclude that a fractional derivative eithBr* or
oD¢, implies the loss of diffusive agent mass. However, in
the case of Eq(1) this deficit is compensated for by the
“virtual source” of diffusion agent at the origin while for Eq.
(2) this fact results in decay of normalization. For the frac-
tional time derivatives based on the Riemann-Liouville frac-
tional integral this conclusion is independent of the order

The “virtual sources” of diffusion agent at the origin for
Eqg. (1) mean that some mass injected at the origin. However,
this injection is not defined by the boundary conditions of the
problem. Thus, the presence of such “virtual sources” in
solutions(7) and(9) is physically meaningless and one needs
to resolve this contradiction. A possible way to solve this
problem is to use some regularization methods, as has been
done for the modified porous medium equation of Barenb-
latt's type[31]. Such a regularization of E¢l) would be the
subject of future investigations.

Another interesting observation is that replacement of the
“left-hand side” definition of the fractional time derivative
with the “right-hand side” definition affects lim,yf(r,t),
which depends on the space variabl@ hus, in a sense, the
divergence of (r,t) atr—0 for Eq.(1) could be replaced by
a nonlocality of the initial conditiori6) att—0 for Eq. (2).
This time-space relationship is not an unexpected finding. It
hints for us to pay attention to the variational formulation of
the diffusion type equation in view of the fractional calculus
and the fractional stationarity concdj25,28,29. This prob-
lem would be a direction for future investigation.

Let us discuss the heuristic merit of the results derived.

The key difference between E@l) and Eq.(2) is the con-

servation of the normalization for solutidii) and the decay

of the normalization for solutiofB). This normalization con-
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